pH stability of HLA-DR4 complexes with antigenic peptides.

نویسندگان

  • M P Belmares
  • J D Rabinowitz
  • W Liu
  • E D Mellins
  • H M McConnell
چکیده

Complexes between antigenic peptides and class II proteins of the major histocompatibility complex (MHC) trigger cellular immune responses. These complexes usually dissociate more rapidly at mildly acidic pH, where they are formed intracellularly, as compared to neutral pH, where they function at the cell surface. This paper describes the pH dependence of the dissociation kinetics of complexes between MHC proteins and antigenic peptides containing aspartic and glutamic acid residues. Some of these complexes show an unusual pH dependence, dissociating much more rapidly at pH 7 than at pH 5.3. This occurs when the carboxylate group of the aspartic or glutamic acid residue is located in a neutral pocket of the protein. In contrast, solvent-exposed carboxylate groups or carboxylate groups buried in pockets where they form salt bridges with the protein do not show this unusual pH dependence. The kinetic data having the unusual pH dependence conform closely to a model in which there is a rapid reversible equilibration between a less stable deprotonated complex and a more stable protonated complex. In this model, the pK(a) of the protonation reaction for the partially buried peptide carboxylate group ranges from 7.7 to 8.3, reflecting the strongly basic conditions required for deprotonation. One of the few peptide/MHC complexes demonstrated to play a role in autoimmunity in humans contains a buried peptide carboxylate and shows this unusual pH dependence. The relevance of this finding to understanding the chemical basis of autoimmunity is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between kinetic stability and immunogenicity of HLA-DR4/peptide complexes.

Immunodominant T cell epitopes from the autoantigen human cartilage glycoprotein 39 have previously been mapped in the context of HLA-DR*0401 and *0402, using mice expressing HLA-DR4 transgenes. We measured the dissociation rates of these epitopes from soluble recombinant DR*0401 and DR*0402 to assess the relationship between peptide/HLA-DR4 kinetic stability and immunogenicity. Experiments wer...

متن کامل

Molecular Identification of Pre-Existing Immunityin Human against H9N2 Influenza Viruses Using HLA-A*0201 Binding Peptides

Background and Aims: The contribution genetic and antigenic diversity of H9N2 influenza viruses in evading from immune responses, cytotoxic T lymphocytes (CTL) epitopes in hemagglutinin (HA) protein restricted by HLA binding peptides was identified. Materials and Methods: Phylogenetic analyses were carried out for all of full length HA and deduced amino acid sequences of H9N2 viruses available ...

متن کامل

A role for HLA-DO as a co-chaperone of HLA-DM in peptide loading of MHC class II molecules.

In B cells, the non-classical human leukocyte antigens HLA-DO (DO) and HLA-DM (DM) are residents of lysosome-like organelles where they form tight complexes. DM catalyzes the removal of invariant chain-derived CLIP peptides from classical major histocompatibility complex (MHC) class II molecules, chaperones them until peptides are available for loading, and functions as a peptide editor. Here w...

متن کامل

Molecular dynamics simulations of HLA-DR4 (DRB1*0405) complexed with analogue peptide: conformational changes in the putative T-cell receptor binding regions.

The specific recognition of foreign peptide bound to the major histocompatibility complex (MHC) molecule by T-cell receptor (TCR) leads to T-cell activation. We found that analogue peptides containing single amino acid substitutions at the third amino acid position (p3), p5, p7 and p8 of the index peptide (YWALEAAAD) induced different response patterns of T cell clones specific for the index pe...

متن کامل

The CLIP-substituted invariant chain efficiently targets an antigenic peptide to HLA class II pathway in L cells.

The presentation of antigenic peptides by major histocompatibility complex (MHC) class II to CD4+ T cells is crucial to initiate immune responses. We developed a new system for delivery of an antigenic peptide to the MHC class II pathway, using the invariant chain (Ii). We designed a mutated human p33-form Ii, CLIP-substituted Ii, in which streptococcal M12p55-68 (RDLEQAYNELSGEA) was substitute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 47  شماره 

صفحات  -

تاریخ انتشار 2000